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Preface

HIS book originated in a course of lectures held at
Columbia University, New York, during the summer
session of 1936.

[t is an elementary treatise throughout, based entirely on
pure thermodynamics; however, it is assumed that the
reader i3 familiar with the fundamental facts of ther-
moretry and calorimetry. Here and there will be found
short references to the statistical interpretation of thermo-
dynarnics.

As 4 guide In writing this book, the author used notes of
his Jectures that were taken by Dr. Lloyd Motz, of Columbia
University, who also revised the final manuseript eritically.
Thanks are due him for his willing and intelligent col-
laboration,

E. Fery
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Introduction

HERMODYNAMICS is mainly concerned with the
transformations of heat into mechanical work and the
opposite transformations of mechanical work into beat.

Only in comparatively recent times have physicists recog-
nized that heat is a form of energy that can be changed into
other forms of energy. Formerly, scientists had thought
that heat was some sort of fluid whose total amount was
invariable, and had simply interpreted the heating of a body
and analogous processes as consisting of the transfer of this
fluid from one body to another. Itis, therefore, noteworthy
that on the basigs of this heat-fiuid theory Carnot was able,
in the year 1824, to arrive at a comparatively clear under-
standing of the limitations involved in the transformation of
heat into work, that is, of essentially what is now called the
second law of thermodynamics (see Chapter III).

In 1842 only eighteen years later, R. J. Mayer discovered
the equivalence of heat and mechanical work, and made the
first announcement of the principle of the conservation of
energy (the first law of thermodynamies).

We know today that the actual basis for the equivalence
of heat and dynamical energy is to be sought in the kinetic
interpretation, which reduces all thermal phenomena to the
disordered motions of atoms and molecules. From this
point of view, the study of heat must be considered as a
special branch of mechanics: the mechanics of an ensemble
of such an enormous number of particles (atoms or mole-
cules) that the detailed description of the state and the
motion loses importance and only average properties of large
numbers of particles are to be considered. This branch of
mechanics, called statzstical mechanics, which has been de-
veloped mainly through the work of Maxwell, Boltzmann,
and Gibbs, has led to a very satisfactory understanding of
the fundamental thermodynamical laws.
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X INTRODUCTION

But the approach in pure thermodynamics is different.
Here the fundamental laws are assumed as postulates based
on experimental evidence, and conclusions are drawn from
them without entering into the kinetic mechanism of the
phenomena. This procedure has the advantage of being
independent, to a great extent, of the simplifying assump-
tions that are often made in statistical mechanical considera-
tions. Thus, thermodynamical results are generally highly
accurate. On the other hand, it is sometimes rather un-
satisfactory to obtain results without being able to see in
detail how things really work, so that in many respects it is
very often convenient to complete a thermodynamical result
with at least a rough kinetic interpretation.

The first and second laws of thermodynamics have their
statistical foundation in classical mechanics. In recent
years Nernst has added a third law which can be inter-
preted statistically only in terms of quantum mechanical
concepts. The last chapter of this book will concern itself
with the consequences of the third law,



CHAPTER 1

Thermodynamic Systems

1. The state of a system and its transformations. The
state of a system in mechanics is completely specified at a
given instant of time if the position and velocity of each mass-
point of the system are given. For a system composed of a
number N of mass-points, this requires the knowledge of
6N variables.

In thermodynamies a different and much simpler concept
of the state of a system is introduced. Indeed, to use the
dynamical definition of state would be inconvenient, because
all the systems which are dealt with in thermodynamics
contain a very large number of mass-points (the atoms or
molecules), so that it would be practically impossible to
specify the 6N variables. Moreover, it would be unneces-
sary to do so, because the quantities that are dealt with in
thermodynamics are average properties of the system;
consequently, a detailed knowledge of the motion of each
mass-point would be superfluous.

In order to explain the thermodynamic concept of the
state of a system, we shall first discuss a few simple examples.

A system composed of a chemically defined homogeneous
fluid. We can make the following measurements on such a
system: the temperature ¢, the volume V¥, and the pressure p.
The temperature can be measured by placing a thermometer
in contact with the system for an interval of time sufficient
for thermal equilibrium to set in. As is well known, the
temperature defined by any special thermometer (for
example, & mercury thermometer) depends on the particular
properties of the thermometric substance used. For the
time being, we shall agree to use the same kind of thermom-
eter for all temperature measurements in order that these
may all be comparable.

i



2 THERMODYNAMIC SYSTEMS

The geometry of our system is obviously characterized
not only by its volume, but also by its shape. However,
most thermodynamical properties are largely independent
of the shape, and, therefore, the volume is the only geometri-
cal datum that is ordinarily given. It is only in the cases
for which the ratio of surface to volume is very large (for
example, a finely grained substance) that the surface must
also be considered.

For a given amount of the substance contained in the
system, the temperature, volume, and pressure are not
independent quantities; they are connected by a relationship
of the general form:

J(p, V,5) =0, (1)

which is called the equaiion of state. Its form depends on
the special properties of the substance. Any one of the
three variables in the above relationship can be expressed
as a function of the other two by solving equation (1) with
respect to the given variable. Therefore, the state of the
system is completely determined by any two of the three
quantities, p, V, and &.

It is very often convenient to represent these two quanti-
ties graphically in a rectangular system of co-ordinates.
For example, we may use a (V, p) representation, plotting V
along the abscissae axis and p along the ordinates axis. A
point on the (¥, p) plane thus defines a state of the system.
The points representing states of equal temperature lie
on a curve which is called an isothermal.

A system composed af a chemically defined homogeneous
solid. In this case, besides the termnperature ¢ and volume
V, we may introduce the pressures acting in different
directions in order to define the state. In most cases,
however, the assumption is made that the solid is subjected
to an isotropic pressure, so that only one wvalue for the
pressure need be considered, as in the case of a fluid.

A system composed of a homogeneous mixiure of several
chemical compounds. In this case the variables defining the
state of the system are not only temperature, volume, and
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pressure, but also the concentrations of the different chemical
compounds composing the mixture.

Nonhomogeneous systems. In order to define the state of a
nonhomogeneous system, one must be able to divide 1t into a
number of homogeneous parts. This number may be finite
in some cases and infinite in others. The latter possibility,
which is only seldom considered in thermodynamics, arises
when the properties of the system, or at least of some of its
parts, vary continuously from point to point. The state of
the system is then defined by giving the mass, the chemical
composition, the state of aggregation, the pressure, the
volume, and the temperature of each homogeneous part.

It is obvious that these variables are not all independent.
Thus, for example, the sum of the amounts of each chemical
element present in the different homogeneous parts must be
constant and equal to the total amount of that element
present in the system. Moreover, the volume, the pressure,
and the temperature of each homogeneous part having a
given mass and chemical composition are connected by an
equation of state.

A system coniarning moving paris. In almost every
system that is dealt with in thermodynamics, one assumes
that the different parts of the system either are at rest or are
moving so slowly that their kinetic energies may be neg-
lected. If this is not the case, one must also specify the
velocities of the various parts of the system in order to
define the state of the system completely.

Tt is evident from what we have said that the knowledge
of the thermodynamical state alone is by no means sufficient
for the determination of the dynamical state. 8Studying the
thermodynamical state of a homogeneous fluid of given
volume at & given temperature (the pressure is then defined
by the equation of state), we observe that there is an infinite
number of states of molecular motion that correspond to it.
With increasing time, the system exists successively in all
these dynamical states that correspond to the given thermo-
dynamical state. From this point of view we may say
that a thermodynamical state is the ensemble of all the
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dynamical states through which, as a result of the molecular
motion, the system is rapidly passing. 7This definition of
state is rather abstract and not quite unique; therefore,
we shall indicate in each particular case what the state
variables are.

Particularly important among the thermodynamical
states of a system are the siaies of eguilibrium . These
states have the property of not varying so long as the
external conditions remain unchanged. Thus, for instance,
a gas enclosed in a container of constant wvolume is in
equilibrium when its pressure is constant throughout and
its temperature is equal to that of the environment.

Very often we shall have to consider fransformations of a
system from an initial state to a final state through a
continuous succession of intermediate states. If the state
of the system can be represented on a (V, p) diagram, such a
transformation will be represented by a curve connecting
the two points that represent the initial and final states.

A transformation is sald to be reversible when the succes-
sive states of the transformation differ by infinitesimals from,
equiltbroum states. A reversible transformation ean there-
fore connect only those initial and final states which are
states of equilibrium. A reversible transformation can be
realized in practice by changing the external conditions so
slowly that the system has time to adjust itself gradually
to the altered conditions. For example, we can produce a
reversible expansion of a gas by enclosing it in a cylinder
with a movable piston and shifting the piston outward very
slowly. If we were to shift the piston rapidly, currents
would be set up in the expanding gaseous mass, and the
intermediate states would no longer be states of equilibrium.

If we transform a system reversibly from an initial state 4
to a final state B, we can then take the system by means of
the reverse transformation from B to A through the same
succession of intermediate states but in the reverse order.
To do this, we need simply change the conditions of the
environment very slowly in a sense opposite to that in the
original transformation. Thus, in the case of the gas



THERMODYNAMIC SYSTEMS 3

discussed in the preceding paragraph, we may compress it
again to its original volume and bring it back to its initial
state by shifting the piston inward very slowly. The
eompression occurs reversibly, and the gas passes through
the same intermediate states as it did during the expansion.

During a transformation, the system can perform positive
or negative external work; that is, the system can do work
on its surroundings or the surroundings can do work on the
system. As an example of this, we consider a body enclosed
in a cylinder having a movable piston of area S at one
end (Figure 1). If p is the pressure of the body against the
walls of the cylinder, then »S is the force
exerted by the body on the piston. If the
piston is shifted an infinitesimal distancedh, | ___. . 1 _____
an infinitesimal amount of work, d:h

dL = pSdh, (2)

is performed, since the displacement is paral-
lel to the force. But Sdi isequal to the in- F
crease, dV, in volume of the system. Thus,
we may write':

dL = pdV. (3) Fig. 1.

1 It is obvious that (3) iz generally valid no matter what the shape of
the container may be. Consider a body at the uniform pressure p, enclosed
in an irregularly shaped container A (Figure 2). Consider now an infini-
tesimal transformation of our system during which the walls of the con-
tainer move from the initial position A to the final position B, thus permit-
ting the body inside the container to expand. ILet do be a surface element
of the container, and let dn be the diaplacement of this element in the
direction normal to the surface of the container. The work performed on
the surface element do by the pressure p during the displacement of the
container from the situation A to the situation B is obviously p do dn.
The total amount of work performed during the infinitesimal tranaforma-
tion is obtained by integrating the above expreasion over all the surface « of
the container; since p iz a constant, we obtain:

dL=pfdo'dﬂ.

It is now evident from the figure that the variation dV¥V of the volume of the
container is given by the surface integral,

dV=fd¢dn.

Comparing these two equations, we ohtain (3).
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For a finite transformation, the work done by the system
is obtained by integrating equation (3):

L = LB pdV, (4)

where the integral is taken over the entire transformation.
When the state of the system can be represented on a
(V, p) diagram, the work
‘J performed during g trans-
formation has a simple
geometrical representa-
tion. Wae consider a trans-
formation from an initial
B state indicated by the point
A to a final state indicated
by the point B (Figure 3).
This transformation will be
represented by a curve con-

necting A and B the shape
of which depends on the type o

of transformation considered.
The work done during this
transformation is given by the B

integral
Vi .A
L = f pdV, (5)
4

A

where V. and V5 are the vol- /
umes corresponding to the /
states A and B. This integral,
and hence the work done, can Fig. 3.

be represented geometrically by the shaded area in the
figure.

Transformations which are especially important are those
for which the initial and final states are the same. These are
called cyclical iransformations or cycles. A eycle, therefore,
is & transformation which brings the system back to its
initial state. If the state of the system can be represented
on a (V, p) diagram, then a cycle can be represented on

Fig. 2.

Ya 5
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this diagram by a closed curve, such as the curve ABCD
(Figure 4).

The work, L, performed by the system during the cyclical
transformation is given geometrically by the area enclosed
by the curve representing the cycle. ILet A and C be the
points of minimum and maximum abscissa of our cycle,
and let their projections on the V-axis be A’ and €', re-
spectively, The work performed during the part ABC of the
transformation is positive and equal to the srea ABCC’A’A.
The work performed during the rest of the transforma-
tion, CDA, is negative and equal in amount to the area
CC'A’ADC. The total amount of positive work done is
equal to the difference between these two areas, and hence is
equal to the area bounded by the cycle.

It should be noted that the total p
work done is positive because we
performed the cycle iIn a clockwise
direction. If the same cycle is per-
formed in a counterclockwise direc-
tion, the work will again be given
by the area bounded by the cycle,
but this time it will be negative.

A transformation during which
the system performs no external Fig. 4.
work is called an isochore fransformaiion. If we assume
that the work dL performed during an infinitesimal
element of the transformation is given, according to equa-
tion (3), by pdV, we find for an isochore transformation
dV = 0, or, by integration, V = a constant. Thus, an
isochore transformation in this case is a transformation at
constant volume. This fact justifies the name <sochore.
It should be noticed, however, that the concept of isochore
transformation is more general, since it requires that d. = 0O
for the given transformation, even when the work dZ. cannot
be represented by equation (3).

Transformations during which the pressure or the tem-
perature of the system remains constant are called <sobaric
and zsothermal transformations, respecilively.

U

B
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2. Ideal or perfect gases. The equation of state of a
gsystem composed of a certain quantity of gas occupying
a volune V at the temperature { and pressure p can be
approximately expressed by a very simple analytical law.
We obtain the equation of state of a gas in its simplest
form by changing from the empirical scale of temperatures,
f, used g0 far to a new temperature scale 7.

We define 7' provisionally as the temperature indicated
by a gas thermometer in which the thermometrie gas is kept
at a very low constant pressure. T is then taken propor-
tional to the volume occupied by the gas. It is well known
that the readings of different gas thermometers under these
conditions are largely independent of the nature of the
thermometric gas, provided that this gas is far enough from
condensation. We shall see later, however (section 9),
that it is possible to define this same scale of temperatures T
by general thermodynamic considerations quite independ-
ently of the special properties of gases.

The temperature T is called the absoluie lemperature.
1ts unit 1s usually chosen in such a way that the temperature
difference between the boiling and the freezing points of
water at one atmosphere of pressure is equal to 100. The
freezing point of water corresponds then, as is well known,
to the absolute temperature 273.1.

The equation of state of a system composed of m grams

of a gas whose molecular weight is M is given approximately
by:

m

pV = 7 RT. (6)
R is a universal constant (that is, it has the same value for all
gases: B = 8.314 X 107 erg/degrees, or (see section 3)
R = 1.986 cal/degrees). Kquation (6) is called the equaiton
of state of an ideal or a perfect gas; it includes the laws of

Boyle, Gay-Lussac, and Avogadro.
No real gas obeys equation (6) exactly. An ideal sub-

stance that obeys equation (6) exactly is called an ideal
or a perfect gas.
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For a gram-molecule (or mole) of a gas (that is, for a
number of grams of a gas equal numerically to its molecular
weight), we have m = M, so that (6) reduces %o:

oV = RT. &)

From (6) or (7) we can obtain the density p of the gas in
terms of the pressure and the temperature:

_m _ Mp
P=% = RT ®
For an isothermal transformation of an ideal gas (trans-
formation at constant temperature), we have:

pV = constant.

On the (V, p) diagram the isothermal transformations of an
ideal gas are thus represented by equilateral hyperbolas
having the V- and p-axes as asymptotes.

We can easily calculate the work performed by the gas
during an isothermal expansion from an initial volume V,
to a final volume V,. This 18 given (making use of (§) and

(6)) by:
Ve m Ve gy
e [ o [

RT log —IT;Q
1

m

M

M

where p;, and pa2 are the initial and final pressures, respec-
tively. For one mole of gas, we have:

I = RT log 1{;3 — RT log g_;. (10)
L

m h
oL (9)

A mixture of several gases is governcd by laws very similar -
to those which are obeyed by a chemically homogeneous
gas. We shall call the pariial pressure of a comnponent of a
mixture of gases the pressure which this component would
exert if it alone filled the volume oceupied by the mixture
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at the same temperature as that of the mixture. We can
now state Dalton’s law for gas mixtures in the following
form:

The pressure exerted by a mizture of gases 3 equal to the
sum of the partial pressures of all the components present
in the mizture.

This law is only approximately obeyed by real gases, but
it is assumed to hold exactly for ideal gases.

Problems

1, Calculate the work performed by a body expanding from an
initial volume of 3.12 lifers to a final volume of 4,01 liters at the
pressure of 2,34 atmospheres.

2. Calculate the pressure of 30 grams of hydrogen mside a
container of 1 cubic meter at the temperature of 18°C.

3. Caleulate the density and specific volume of nitrogen at the
temperature of 0°C,

4, Caleulate the work performed by 10 grams of oxygen
expanding isothermally at 20°C from 1 to .3 atmospheres of
pressure.



CHAPTER II

The First Law of Thermodynamics

3. The statement of the first law of thermodynamics.
The first law of thermodynamics is essentially the statement
»f the principle of the conservation of energy for thermo-
dynamical systems. Assuch, it may be expressed by stating
that the variation in energy of a system during any trans-
formation is equal to the amount of energy that the system
receives from its environment. In order to give a precise
meaning to this statement, it is necessary to define the
pbrases ‘‘energy of the system” and ‘“‘energy that the
system receives from its environment during a transfor-
mation.”

In purely mechanical conservative systems, the energy is
equal to the sum of the potential and the kinetic energies,
and hence is a function of the dynamical state of the system;
because to know the dynamical state of the system is
equivalent to knowing the positions and velocities of all the
mags-points contained in the system. If no external forces
are acting on the system, the encrgy remains constant.
Thus, if A and B are two successive states of an isolated
system, and U, and Uy are the corresponding energies, then

I,f,g = I]B.

When external forces act on the system, U, need no
longer be equal to Us. If —L isthe work performed by the
external forces during a transformation from the initial
state A to the final state B (+L is the work performed by
the system), then the dynamical principle of the conserva-
tion of energy takes the form:

Usg — Us = —L. (11)
From this equation it follows that the work, L, performed

during the transformation depends only on the extreme
1l
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states A and B of the transformation and not on the par-
ticular way in which the trapnsformation from A to B is
performed.

Let us assume now that we do not know the laws of
Interaction among the various mass-points of our dynamical
system. Then we cannot calculate the energy of the system
when it is in a given dynamical state. By making use of
equation (11), however, we can nevertheless obtain an
empirical definition of the energy of our system in the
following way:

We consider an arbitrarily chosen state O of our system
and, by definition, take its energy to be zero:

Uo = 0. (12)

We shall henceforth refer to this state as the standard state
of our system. Consider now any other state 4 ; by apply-
ing suitable external forces to our system, we can transform
it from the standard state (in which we assume it to be
initially) to the state A. Let L, be the work performed by
the system during this transformation (—Z, is, as before,
the work performed by the external forces on the system).

Applying (11} to this transformation, and remembering (12),
we find that

Uy = —Ly. (13)

This equation can be used as the empirical definition of the
energy [/, of our system in the state A.

It is obviously necessary, if definition (18) is to have =&
meaning, that the work L, depend only on the states O and
A and not on the special way in which the transformation
from O to A is performed. We have already noticed that
this property follows from (11). If one found experi-
mentally that this property did not hold, it would mean
either that energy is not conserved in our system, or that,

besides mechanical work, other means of transfer of energy
must be taken into account.
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We shall assume for the present that the work performed
by our mechanical system during any transformation
depends only on the initial and final states of the trans-
formation, so that we can use (13) as the definition of the
energy.

We can immediately obtain {(11) from (13) as follows: A
transformation between any two states A and B can always
be performed as a succession of two transformations: first a
transformation from A to the standard state O, and then a
transformation from O to B. Since the system performs
the amounts of work —~L, and +Z1L; during these two
transformations, the total amount of work performed
during the transformation from A to B (which is independent

of the particular way in which the transformation is per-
formed) is:

L = '-'-LA + L};.
From (13) and the analogous equation,
UB _— — LB 3

we obtain now:
UB —_ UA = -L,

which is identical with (11).

We notice, finally, that the definition (13) of the energy is
not guite unique, since it depends on the particular choice
of the standard state 0. If instead of O we had chosen a
different standard state, ', we shoull have obtained a
different value, U, for the energy of the state A. It
can be easily shown, however, that U}, and 77, differ only
by an additive constant. Indecd, the transformation from
O’ to A can be put equal to the sum of two transformations:
one going from O to O and the other going from O to A.
The work L, performed by the system in passing from 0’ to
A is thus equal to:

F 4

L_q = L’o'u + L,-l,
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where L oo is the work performed by the system In going
from O’ to O. We have now:

Ui = —La; U; = '—'LL,
50 that
UA. — U:t = LO'Gr

which shows that the values of the energy based on the two
definitions differ only by the constant Lo 0.

This indeterminate additive constant which appears in the
definition of the energy is, as is well known, an essential
feature of the concept of energy. Since, however, only
differences of energy are considered in practice, the additive
constant does not appear in the final results.

The only assumption underlying the above empirical
definition of the energy is that the total amount of work
performed by the system during any transformation depends
only on the initial and final states of the transformation.
We have already noticed that if this assumption is contra-
dicted by experiment, and if we still do not wish to discard
the principle of the conservation of energy, then we must
admit the existence of other methods, besides mechanical
work, by means of which energy can be exchanged between
the system and its environment.

Let us take, for example, a system composed of a quantity
of water., We consider two states A and B of this system at
atmospheric pressure; let the temperatures of the system in
these two states be i, and 1, respectively, with {, < {».
We can take our system from A to B in two different ways.

Farst way: We heat the water by placing it over a flame
and raise its temperature from the initial value {4 to the
final value #s. The external work performed by the
system during this transformation is practically zero. It
would be exactly zero if the change in temperature were not
accompanied by a change in volume of the water. Ac-
tually, however, the volume of the water changes slightly
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during the transformation, so that a small amount of work is
performed (see equation (3)). We shall neglect this small
amount of work in our considerations.

Second way: We raise the temperature of the water from
t4 to Iz by heating it by means of friction. To this end, we
immerse a small set of paddles attached to a central axle in
the water, and churn the water by rotating the paddles.
We observe that the temperature of the water increases
continuously as long as the paddles continue to rotate.
Since the water offers resistance to the motion of the paddles,
however, we must perform mechanical work in order to
keep the paddles moving until the final temperature #; is
reached. Corresponding to this considerable amount of
positive work performed by the paddles on the water, there
is an equal amount of negative work performed by the water
in resisting the motion of the paddles.

We thus see that the work performed by the system in
going from the state A to the state B depends on whether
we go by means of the first way or by means of the second
way.

If we assume that the principle of the conservation of
energy holds for our system, then we must admit that the
energy that is transmitted to the water in the form of the
mechanical work of the rotating paddles in the second way
is transmitted to the water in the first way in a nonmechani-
cal form called heat. We are thus led to the fact that heat
and mechanical work are equivalent; they are two different
aspects of the same thing, namely, energy. In what follows
we shall group under the name of work electrical and
magnetic work as well as mechanical work. The first two
types of work, however, are only seldom considered in
thermodynamics.

In order to express in a more precise form the fact that
heat and work are equivalent, we proceed as follows.

We first enclose our system in a container with non-heat-
conducting walls in order to prevent exchange of heat with
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the environment.! We assume, however, that work can be
exchanged between the system and its environment (for
example, by enclosing the system in a cylinder with non-
conducting walls but with a movable piston at one end).
The exchange of energy between the insgide and the outside
of the container can now occur only in the form of work, and
from the principle of the conservation of energy it follows
that the amount of work performed by the system during
any transformation depends only on the initial and the
final states of the transformation.?

We can. now use the empirical definition (13) of the energy
and define the energy U as a function of the state of the
system only.? Denoting by AU = U — {7, the variation
in the energy of our system that oceurs during a transfor-
mation from the state A to the state B, we can write
equation (11}, which is applicable to our thermally insulated
system, in the form:

AU + L = 0. (14)

If our system is not thermally insulated, the left-hand side
of (14) will in general be different from zero because there
can then take place an exchange of energy in the form of

1 We need only mention here thaet no perfeet thermal insulators exist.
Thermal insulation can be obtained approximately, however, by means of
the well-known methods of Calorimetry.

? It would be formally more exaet, although rather abstract, to state the
content of the preceding sentences a3 follows:

Experiments show that there exist certain substances called thermal
insulglors having the following properties: when & system is completely
enclosed in a thermal insulator in such a way that work can be exchanged
hetween the inside and the outside, the amount of work performed by the
system during a given transformation depends only on the initial and final
states of the transformation.

8 It should be noticed here that if definition (13) of the energy of a state
A of our system is to be applieable, it must be possible to transform the
system from the standard state O to the state A while the system ix ther-
melly insulated. We shall show later (see section 13) that such a trans-
formation is not always possible without an exchange of heat. In such
cages, howaver, the opposite transformstion A — O can alweys be per-
formed. The work performed by the system during this reverse transfor-
mation is — L, ; we can therefore apply (13) to such cases also.
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heat. We shall therefore replace (14) by the more general
equation:

AU + L = Q, (15)

where @ is equal to zero for transformations performed on
thermally insulated systems and otherwise, in general, is
different from zero.

@ can be interpreted physically as the amount of energy
that is received by the system in forms other than work.
This follows immediately from the fact that the variation
in energy, AU, of the system must be equal to the total

amount of energy received by the system from its environ-
ment. But from (15)

AU = —L + @,

and — L is the energy received in the form of work. Hence,
@ stands for the energy received in all other forms.

By definition, we shall now call @ the amount of heat
received by the system during the transformation.

For a cyclic transformation, equation (15) takes on a very
simple forma. Since the initial and final states of a cycle are

the same, the variation in energy is zero: AU = 0. Thus,
(15) becomes:

L = §. (16)

That is, the work performed by a system during a cyeclic
transformation is equal to the heat absorbed by the system.

It is important at this point to establish the connection
between this abstract definition of heat and its elementary
calorimetric definition. The calorimetric unit of heat, the
calorie, is defined as the quantity of heat required to raise
the temperature of one gram of water at atmospheric
pressure from 14°C to 15°C. Thus, to raise the temperature
of m grams of water from 14°C to 15°C at atmospheric
pressure, we require m calories of heat. Let Awu,denote the
variation in encrgy of one gram of water, and I, the work
done as a result of its expansion when its temperature is
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raised from 14°C to 15°C at atmospheric pressure. For m
grams of water, the variation in energy and the work done

are:
ﬁUu = m.ﬁuc, La = ?n'lu- (17)

We now consider a system S which undergoes a transfor-
mation. In order to measure the heat exchanged between
the system and the surrounding bodies, we place the system
in contact with a calorimeter containing m grams of water,
initially at 14°C. We choose the mass of the water in such a
way that after the transformation has been completed, the
temperature of the water is 15°C,

Since an ideal calorimeter is perfectly insulated thermally,
the complex system composed of the system S and the
calorimetric water is thermally insulated during the trans-
formation. We may therefore apply equation (14) to this
transformation. The total wariation in energy is equal
to the sum:

AU — AUB + éU;,

where AU, is the variation in energy of the system .S, and
AU, is the variation in energy of the calorimetric water.
Similarly, for the total work done, we have:

L = Ls + L..
From (14) we have, then,
AUs + AU, + Lsg + L, = 0;
or, by (17),
AUs + Lg = — (AU, + L.)
= —m(Au, + L).

But from the definition (15), AUs + Ly is the amount of
heat ¢ received by the system 8. Thus, we have:

Qs = —m(Au, + L. (18)
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We see from this that the amount of heat is proportional
to m.

On the other hand, in calorimetry the fact that m grams of
calorimetric water have been heated from 14°C to 15°C
means that m calories of heat have been transferred from
the system S to the calorimeter; that is, that the system S
hag received —m calories, or that @, expressed in calories,
is equal to —m. We see also, by comparison with (18),
that the amount of heat, as given by the definition (15), is
proportional to the amount when it is expressed in calories;
the constant of proportionality is (Au. -+ L.).

According to (15), heat is measured in energy units (ergs).
The constant ratio between ergs and calories has been
measured by many investigators, who have found that

1 calorie = 4.185 X 10’ ergs. (19)

In what follows we shall generally express heat measure-
ments in energy units.

Equation (15), which is a precise formulation of the
equivalence of heat and work, expresses the first law of
thermodynamaics.

4. The application of the first law to systems whose
states can be represented on a (V, ) diagram. We shall
now apply the first law of thermodynamics to a system,
such as a homogeneous fluid, whose state can be defined in
terms of any two of the three variables V, p, and 7. Any
function of the state of the system, as, for example, its
energy, U, will then be a function of the two wvariables
which have been chosen to represent the state.

In order to avoid any misunderstanding as to which are
the independent wvariables when it is necessary to differ-
entiate partially, we shall enclose the partial derivative
symbol in a parenthesis and place the wvariable that is to
be held constant in the partial differentiation at the foot

ally

of the parenthesis. Thus, (ﬁ) means the derivative of
v
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U with respect to T, keeping V constant, when 7 and V
are taken as the independent variables. Notice that the

b
in the first case the volume is kept constant while in the

second case the pressure is kept constant.

We now consider an infinitesimal transformation of our
system, that is, a transformation for which the independent
variables change only by infinitesimal amounts. We apply
to this transformation the first law of thermodynamics as
expressed by equation (15). Instead of AU, L, and Q, we
must now write dU, dI, and dQ, in order to point out the
infinitesimal nature of these quantities. We obtain, then,

al
above expression is in general different from (}Tf’) , because

dlV + dL = dQ. (20)
Since for our system, 4L is given by (3), we have:
AU + pdV = dQ. (21)

If we choose T and V as our independent wvariables, U
becomes a funetion of these variables, so that:

al = ( )dT+(

and (21) becomes:

(ﬁ T + [( ) ]dv = dQ. (22)

Similarly, taking 7 and p as independent variables, we have:

[R), +(25) Jor (), + A2 Jor =0

Finally, taking V and p as independent variables, we obtain :

) dp + [( ]dv — dQ. (24)

The thermal capaczty of a body 1s, by definition, the ratio,
dQ/dT, of the infinitesimal amount of heat d@Q absorbed by
the body to the infinitesimal increase in temperature 47
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produced by this heat. In general, the thermal capacity
of a body will be different according as to whether the body
is heated at constant volume or at constant pressure.
Let Cyand €, be the thermal capacities at constant volume
and at constant pressure, respectively.

A simple expression for Cy can be obtained from (22).
For an infinitesimal transformation at constant wvolume,

adV = 0; hence,
= (r). - Go). @)

Similariy, using (23), we obtain the following expression

for C,
(D)D), o

The second term on the right-hand side represents the
effect on the thermal capacity of the work performed during
the expansion. An analogous term is not present in (25),
because in that case the volume is kept constant so that no
expansion occurs.

The thermal eapacity of one gram of a substance is called
the specific heat of that substance; and the thermal capacity
of one mole is called the molecular heat. The specific and
molecular heats at constant volume and at constant pressure
are given by the formulae (25) and (26) if, instead of taking
an arbitrary amount of substance, we take one gram or
one mole of the substance, respectively.

5. The application of the first law to gases. In the case
of a gas, we can express the dependence of the energy on the
state wvariables explicitly. We choose T and V as the
independent variables, and prove first that the energy is a
function of the temperature T' only and does not depend
on the volume V. This, like many other properties of
gases, is only approximately true for real gases and is
assumed to hold exactly for ideal gases. In section 14 we
ghall deduce from the second law of thermodynamics the
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result that the energy of any body which obeys the equation
of state, (7}, of an ideal gas must be independent of the
volume V. At this point, however, we shall give an experi-
mental proof of this proposition for a gas; the experiment
was performed by Joule.

Into a calorimeter Joule placed a container having two
chambers, A and B, connected by a tube (Figure 5). He
filled the chamber A with a gas and evacuated B, the two
chambers having first been shut off from each other by a
stopcock in the connecting tube. After thermal equilibrium
had set in, as indicated by a thermometer placed within the
calorimeter, Joule opened the stopcock, thus permitting
the gas to flow from A into B unitil the pressure everywhere
in the container was the same.

———————~——-| He then observed that there was
o ===t only a very slight change in the
=k —— AEZ reading of the thermometer.
= & |==| =& j{:: This meant that there had been
= == “:E- practically mo transfer of heat
szl J==1 _I=—=! from the calorimeter to the cham-
= _—= ——--=:=| ber or vice versa. It is assumed

— Fig. S that if this experiment could be
- performed with an ideal gas,

there would be no temperature change at all.

We now apply the first law to the above transformation.

Since @ = 0, we have from equation (15) for the system
composed of the two chambers and the enclosed gas:
AU + L = 0,

where L is the work performed by the system and AU is the
variation in energy of the system. Since the volumes of the
two chambers 4 and B composing our system do not change
during the experiment, our system can perform no external
work, that is, L. = 0. Therefore,

AU = @;

the energy of the system, and, hence, the energy of the gag,
do not change.
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Let us now consider the process as a whole. Initially
the gas occupied the volume A4, and at the end of the process
it filled the two chambers A and B; that is, the transforma-
tion resulted in a change in volume of the gas. The experi-
ment showed, however, that there was no resultant change
in the temperature of the gas. Since there was no variation
in energy during the process, we must conclude that a
variation in volume at constant temperature produces no
variation in energy. In other words, fhe energy of an ideal
gas 18 a funciion of the lemperature only and not a function of
the volume. We may therefore write for the energy of an
ideal gas:

U = U 27)

In order to determine the form of this function, we make use
of the experimental result that the specific heat at constant
volume of a gas depends only slightly on the temperature;
we shall assume that for an ideal gas the specific heat is
exactly constant. In this section we shall always refer to
one mole of gas; Cy and C, will therefore denote the molecu-
lar heats at constant volume and at constant pressure,
respectively.

Since U depends only on T, it is not necessary to specify
that the volume is to be kept constant in the derivative in
(25); so that, for an ideal gas, we may write:

dU
dT"
Since Cv is assumed to be constant, we can integrate at once,
and we get:

Cv = (28)

U =CeT + W, (29)

where W is a constant of integration which represents the
energy left in the gas at absolute zero temperature.*

4 This additive constant affects the final results of the calculations only
when chemical transformations or changes of the atates of aggregation
of the substances are involved. (See, for example, Chapter VI.) In all
other cases, one may place the additive constant equal to zero.



24 THE FIRST LAW OF THERMODYNAMICS

For an ideal gas, equation (21), which expresses the firat
law of thermodynamics for infinitesimal transformations,
takes on the form:

CodT + pdV = dQ. (30)

Differentiating the characteristic equation (7) for one mole
of an ideal gas, we obtain.:

pdV + Vdp = RdT. (31)
Substituting this in (30), we find:
(Cy + R)AT — Vdp = dQ. (32)
Since dp = 0 for a transformation at constant pressure,
this equation gives us:
p_(Q) — Cv + R. (33)

That is, the difference between the molecular heats of a gas
at constant pressure and at constant volume is equal to the

gas constant K.
The same result may also be obtained from (26), (29), and
(7). Indeed, for an ideal gas we have from (29) and {(7):

(), Hcn (), (), -
8T /.~ daT ~— % aT p
Substituting these expressions in (26), we again obta.m {(33).
It can be shown by an application of kinetic theory that:
Cy = £ R for a monatomic gas; and

Cy = § R for a diatomic gas. (34)

Assuming these values, which are in good agreement with
experiment, we deduce from (33) that:

C, = % R for a monatomic gas; and
Cr = % R for a diatomic gas. (35)
If we place
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we also obtain:

K = % for a monatomic gas; and
K = £ for a diatomic gas. (37)

6. Adiabatic transformations of a gas. A transformation
of a thermodynamical system is said to be adiabatic if it is
reversible and if the system is thermally insulated so that no
heat can be exchanged between it and its environment
during the transformation.

We can expand or compress g gas adiabatically by enclos-
ing it in a cylinder with non-heat-conducting walls and
piston, and shifting the piston outward or inward very
slowly. If we permit a gas to expand adiabatically, it does
external work, so that L in equation (15) is positive. Since
the gas is thermally insulated, @ = 0, and, hence, AU must
be pegative. That is, the energy of a gas decreases during
an adiabatic expansion. Since the energy is related to the
temperature through equation (29), a decrease in energy
means a decrease in the temperature of the gas also.

In order to obtain a quantitative relationship between
the change in temperature and the change in volume
resulting from an adiabatic expansion of a gas, we observe
that, since d@ = 0, equation (30) becomes:

CvdT - pdV = 0.

1

Using the equation of state, pV = RT, we can eliminate p
from the above equation and obtain:

CvdT + = dV = 0,
V
or
dTl R dV
—— + __.v e im — 0_
Integration yields:

log T +4- g; log ¥V = constant.
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Changing from logarithims to numbers, we get:
=
TV Y = constant.

Making use of (36), we can write the preceding equation
in the form:

TVE™ = constant. (38)

This equsation tells us quantitatively how an adiabatic
change in the volume of an ideal gas determines the change
in its temperature. If, for example, we expand a diatomic
gas adiabatically to twice its initial volume, we find from
(38) (assuming, according to (37), that K = %) that the
temperature is reduced in the ratio 1:2"* =1: 1.32.

Using the equation of state, pV = RT, we can put equa~
tion (88) of an adiabatic transformation in the following
forms:

pV" — constant. (39)
“'g"’:f — constant. (40)

T
P
Equation (39) is to be compared with the equation,
pV = constant,

of an isothermal transformation. On the (V, p) diagram,
the isothermals are a family of equilateral hyperbolae; the
adiabatic lines represented by equation (39), are qualita-
tively similar to hyperbolae, but they are steeper because
K > 1.

Isothermal and adiabatic curves are represented in
Figure 6, the former by the solid lines and the latter by the
dotted lines.

An interesting and simple application of the adiabatic
expansion of a gas is the calculation of the dependence of the
temperature of the atmosphere on the height above sea
level., The principal reason for this variation of tempera-



